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Abstract

We show that the dispersal routes reconstruction problem can be stated as an in-
stance of a graph theoretical problem known as the minimum cost arborescence
problem, for which there exist efficient algorithms. Furthermore, we derive some
theoretical results, in a simplified setting, on the possible optimal values that
can be obtained for this problem. With this, we place the dispersal routes re-
construction problem on solid theoretical grounds, establishing it as a tractable
problem that also lends itself to formal mathematical and computational anal-
ysis. Finally, we present an insightful example of how this framework can be
applied to real data. We propose that our computational method can be used to
define the most parsimonious dispersal (or invasion) scenarios, which can then
be tested using complementary methods such as genetic analysis.
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1. Introduction

Consider the problem of reconstructing the dispersal routes of a given species
based on historical data of the first occurrences in various locations. This prob-
lem is commonplace, for instance, in the reconstruction of dispersal routes by
invasive exotic species [20, 10, 1, 11]. Traditionally, the spatial expansion of
exotic species is investigated using a sequence of maps representing the dis-
tribution of herbarium records at different time periods (e.g. [20]). However,
this graphical approach does not allow for a quantitative understanding of the
dispersal process. Consequently, quantitative studies of dispersal have mostly
been performed by using analytical models of dispersal of individuals in a pop-
ulation according to random-walk and diffusion processes (see e.g. [29, 13]). In
other words, these models concentrate on “mechanistic” bottom-up instead of
“empirical” top-down approaches.

The first versions of these models were already realized during the first half
of the 20th century [15, 28]. More recently, different approaches based on spatial
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statistics [5, 2] or on the use of genetic data (see [18] for an overview) have been
proposed. However, these techniques often rely on overly simplistic assump-
tions (such as a constant invasion velocity), are unsuitable for small sample
sizes, or do not allow for testing multiple invasion scenarios against each other.
Here, we propose a versatile method to reconstruct dispersal routes, using ac-
tual observed historical data (e.g., herbarium records), that overcomes most
of the above shortcomings, has a firm theoretical foundation, and can easily
incorporate various additional model assumptions and features.

The dispersal routes reconstruction problem can generally be formulated as
follows. Given a number of geographic locations with (X,Y ) (or lat&long) co-
ordinates, and for each location a “first occurrence time” t (when the particular
species of interest was first observed in that location), reconstruct possible dis-
persal routes such that the total sum of the distances of the dispersal events
is minimized and there is a unique dispersal path from the earliest occupied
location to each later occupied location. In other words, for each location where
the species has been observed, choose a candidate “seed” location (i.e., a loca-
tion that was already occupied at least as early as the current one) from where
the species could have dispersed to the current location, in such a way that the
total length of the dispersal routes is as small as possible and each location has
exactly one “seed” location.

As we will show, this problem can be viewed as an instance of a graph theo-
retical problem known as the minimum cost arborescence (MCA) problem, for
which there exist polynomial-time algorithms. In this paper, we prove formally
that the dispersal routes reconstruction problem can indeed be converted to and
solved efficiently as an instance of the MCA problem. We also show that if the
first occurrence times ti are all unique (i.e., no two first occurrence times are
the same), the dispersal routes reconstruction problem reduces to the minimum
cost spanning tree problem for which a simple and efficient “greedy” algorithm
suffices. Next, we derive some additional theoretical results, in particular ana-
lytical expressions (in a spatially restricted setting) for the minimum, average,
and maximum possible values of the total length of optimally reconstructed
dispersal routes. These theoretical results are then verified with corresponding
empirical results that are obtained from performing computer simulations of
(random) instances of this restricted problem version. Finally, we present an
example of how the theoretical framework and analysis can be applied to real
data from an invasive plant species, and can generate insightful results.

Our method clearly is an “empirical” one (i.e., it fits observed historical
data without defining specific mechanisms), as opposed to the “mechanistic”
methods mentioned earlier. In that sense, it is very similar in spirit to for
example phylogenetic tree reconstruction [25, 14]. In phylogenetics, a parsimony
assumption is used to reconstruct a phylogenetic tree that is most likely to have
generated the observed data. However, it is generally not sufficient, or even
desirable, to generate just one tree. In fact, different model assumption can be
incorporated (such as varying mutation rates, or a given number of fixed sites)
so that different scenarios (i.e., trees) can be reconstructed, which can then be
further tested with additional methods (using, e.g., fossil data). Or, uncertainty
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in the data is taken into account by adding a stochastic component so that
a statistical analysis (such as bootstrap) can be performed on an ensemble
of reconstructed trees. We will show here that our proposed dispersal routes
reconstruction method allows for all of this as well, thus making it a versatile
and theoretically sound method.

This paper is organized as follows. The next section reviews some basic
graph theory and describes the minimum cost arborescence problem. Section
3 then formally states the dispersal routes reconstruction problem as an in-
stance of the minimum cost arborescence problem, and also shows that when
all first occurrence times are unique, it reduces to the minimum cost spanning
tree problem. In section 4, some theoretical expressions are derived for the pos-
sible optimal total lengths of the reconstructed dispersal routes in a spatially
restricted version of the problem. These results are then compared to empirical
results obtained from computer simulations. Next, section 5 present an insight-
ful example with real data. Finally, section 6 summarizes the main conclusions,
and discusses the relevance of our work in a more general context.

2. The minimum cost arborescence problem

We start by reviewing some relevant definitions from graph theory (see e.g.
[32], or any other standard text book on graph theory).

A graph G = (V,E) consists of a set of vertices (or nodes) V and a set of edges
E that connect pairs of vertices. For example, if there is a connection between
two vertices vi, vj ∈ V , then (vi, vj) ∈ E. If these edges are directed, i.e., the
edge “points” from vertex vi to vertex vj in a one-way manner, then G is called
a directed graph (or digraph for short). Note that in an undirected graph, the
vertex pairs (vi, vj) ∈ E are unordered, i.e., (vi, vj) and (vj , vi) denote the same
(undirected) edge. However, in a directed graph, the vertex pairs are ordered,
i.e., (vi, vj) and (vj , vi) denote different (directed) edges. The total number of
vertices in G is denoted |V | (the size of the vertex set V ) and the total number
of edges in G is denoted |E| (the size of the edge set E). In the following, we
are only concerned with directed graphs, a simple example of which is shown in
figure 1.

A (directed) path from vertex v1 to vertex vk in G is a sequence of vertices
(v1, v2, . . . , vk) such that (vi, vi+1) ∈ E for 1 ≤ i < k. An arborescence is
a directed graph G in which, for a unique vertex vr called the root, and any
other vertex vk, there is exactly one directed path from vr to vk. In other
words, each vertex vj in an arborescence has exactly one “predecessor” vi such
that (vi, vj) ∈ E, and there is one unique vertex vr (the root) which has no
predecessors (all edges point “away” from the root). Even though an arbitrary
directed graph G can (potentially) contain cycles (a path that returns to its
starting vertex), an arborescence has, by definition, never any cycles.

Now suppose there is a cost function c(e) that assigns a “cost” to each
edge e = (vi, vj) in a directed graph G. One could imagine this as the cost of
“traveling” from vertex vi to vj . The minimum cost arborescence problem, also
known as the minimum branching problem, is then stated as follows [17]:
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Figure 1: A simple example of a directed graph G = (V,E) with
vertex set V = {v1, v2, v3, v4, v5, v6} (|V | = 6) and edge set E =
{(v1, v2), (v1, v4), (v2, v3), (v3, v5), (v4, v2), (v4, v5), (v4, v6), (v6, v5)} (|E| = 8). The
sequence (v1, v4, v2, v3, v5) is an example of a (directed) path from v1 to v5.

Minimum cost arborescence (MCA) problem: Given a di-
rected graph G = (V,E), a unique root vertex vr ∈ V , and a cost
function c(e), e ∈ E, find a subgraph GMCA = (V,E′) with E′ ⊂ E,
that is an arborescence with root vr and that has a minimum total
cost C =

∑
e∈E′ c(e).

Polynomial-time algorithms for solving this problem were proposed inde-
pendently first in [8] (calling it “shortest arborescence”), then in [12] (calling it
“optimum branching”), and finally in [6] (calling it “minimum spanning tree in
a directed network”). These algorithms are based on well-known and efficient
minimum cost spanning tree algorithms for undirected graphs, with a recursive
extension to check for, and resolve, potential cycles [17]. The running time of
the basic MCA algorithm is O(|V ||E|). Later, an improvement was made in
[31], resulting in a running time of O(|E|log|V |) for sparse graphs and O(|V |2)
for dense graphs. So, the MCA problem can clearly be solved efficiently, and is
therefore in the problem class P [16].

Note that when a given (directed) graph G is acyclic (i.e., contains no cycles),
then obviously any subgraph G′ ⊂ G will also be acyclic, and there is no need for
checking and resolving potential cycles during the construction of the minimum
cost arborescence. In this case, an MCA GMCA ⊂ G can be found by simply
using a “greedy” minimum cost spanning tree algorithm as follows [17]. For each
non-root vertex vj , the (unique) “predecessor” is chosen as vertex vi such that
e = (vi, vj) ∈ E and c(e) is minimal (choosing, e.g., at random in case of a tie).
More formally, for each vj 6= vr, only retain the incoming edge (vi, vj) for which
i = argmink 6=j {c(e = (vk, vj))|e = (vk, vj) ∈ E}. This algorithm has a running
time of O(|V |2) in general, or even O(|V | + |E|) when using an appropriate
adjacency list implementation.

3. Dispersal routes reconstruction as an MCA problem

The dispersal routes reconstruction problem, as described in section 1, can
now be formalized as an instance of the minimum cost arborescence problem.
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Theorem 3.1. Given an instance of the dispersal routes reconstruction problem
with n locations and, for each location i ∈ [1, . . . , n], its (Xi, Yi) coordinates and
a first occurrence time ti, this problem can be solved in polynomial time as an
instance of the minimum cost arborescence problem.

Proof. First we need to show that the dispersal routes reconstruction problem
instance can be converted to a minimum cost arborescence problem instance in
polynomial time. This will be done by construction.

1. Construct a directed graph G = (V,E) with |V | = n vertices, where each
vertex vi ∈ V corresponds (one-to-one) to a location i. Label each vertex
vi with the occurrence time ti of the corresponding location.

2. Include an edge e = (vi, vj) (i.e., from vertex vi to vj) in E if ti ≤ tj , i.e.
if location vi has an earlier or equal first occurrence time as location vj .

3. Choose as root vertex vr the vertex (location) with the smallest ti (the
earliest occurrence time).

4. Finally, define a cost function c(e) as the (euclidean) distance between the
two locations corresponding to the vertices (vi, vj) = e, calculated using
their respective coordinates (Xi, Yi) and (Xj , Yj).

The time required for step 1 is O(|V |), O(|V |2) for step 2, O(|V |) for step 3,
and O(|V |2) for step 4. So, overall this conversion can be done in O(|V |2) time.

Next, applying one of the existing MCA algorithms [8, 12, 6, 31] to the
directed graph G as constructed above, will result in a subgraph GMCA that
has a minimum total cost (i.e., sum of the edge costs or, correspondingly, total
length of the dispersal routes) and in which each vertex (location) vj has exactly
one “predecessor” vi, i.e., the location from which it was (supposedly) first
occupied, linking it back to the root vertex vr via a unique dispersal path. This
subgraph GMCA (the minimum cost arborescence of G) thus provides a most
parsimonious solution to the original dispersal routes reconstruction problem in
polynomial time.

So, both the conversion to an MCA instance and generating the optimal
solution can be done in polynomial time, which completes the proof.

Note that the optimal solution resulting from applying the MCA algorithm
is not necessarily unique. There may be several different arborescences (disper-
sal routes) with the same minimum cost (total dispersal routes length). It is
therefore possible that there are multiple most parsimonious dispersal scenarios.

Several further remarks regarding the dispersal routes reconstruction prob-
lem as an instance of the MCA problem are in place here. Firstly, cases where
there are multiple independent locations of origin or introduction of a species
can still be formulated in terms of only one (unique) root vertex vr by choos-
ing the earliest of the two origin or introduction location as the root vertex,
and then simply removing the incoming edge for the other (later) introduction
location in the resulting minimum cost arborescence GMCA. Simply removing
this incoming edge will (correctly) result in two “disconnected” arborescences,
where each occupied location is linked through a unique dispersal path to only
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one of the two origin or introduction location. In section 5, we will show an
example with real data that contains two known introduction locations.

Secondly, if the (observed) occurrence times ti for the various locations are
all unique, then the problem becomes even simpler, as is stated in the following
theorem.

Theorem 3.2. If, for a given instance of the dispersal routes reconstruction
problem, all first occurrence times ti are unique (i.e., ti 6= tj if i 6= j), then the
problem reduces to the minimum cost spanning tree problem and can be solved
using a simple and efficient greedy algorithm.

Proof. Construct a directed graph G as described in the proof of Theorem 3.1,
adding only edges (vi, vj) to E if ti ≤ tj . The only way this graph G can contain
a cycle such as (v1, v2, v3, . . . , v1), is if t1 ≤ t2 ≤ t3 ≤ . . . ≤ t1, which would
imply t1 = t2 = t3 = . . . = t1. Therefore, if all first occurrence times ti are
unique, then G will necessarily be acyclic. And, as was shown at the end of
section 2, in case of an acyclic directed graph the minimum cost arborescence
problem reduces to the minimum cost spanning tree problem for which a simple
and efficient greedy algorithm suffices.

Thirdly, it is perhaps undesirable to simply apply the MCA algorithm to
a given data set and then consider the resulting minimum cost arborescence
GMCA as “the” solution. Especially if there is uncertainty in the data (for
example, an actual first occurrence obviously happened some time before the
first observation was made), this approach may not be adequate. However, this
can be dealt with easily in our methodology by adding a stochastic component.
In particular, random values (from some appropriate distribution) can be sub-
tracted from the first occurrence times to take the uncertainty into account,
before applying the MCA algorithm. This procedure can then be repeated a
number of times, creating an ensemble of instances (and corresponding mini-
mum cost arborescences) on which a statistical or bootstrap analysis can be
performed. This way, a measure of robustness of the solution (or set of solu-
tions) can be obtained. We provide an example of this in section 5. A similar
statistical method can be applied to the actual distances between locations as
well, as there is always a non-zero probability that an empty site is invaded by
an already occupied location that is not the nearest one (although we return
to this issue shortly with an alternative approach). Adding or subtracting ran-
dom values from the distances will cause the algorithm to occasionally choose
a non-nearest location as “predecessor”. And even if the method is not put in
a statistical context this way, it can, for example, be used to generate plau-
sible dispersal scenarios as a null-model, against which other scenarios can be
compared and tested.

Finally, many additional features and assumptions can easily be incorporated
in the general MCA framework. For example, simply using the euclidean dis-
tance between two locations as the cost function c(e) does not take into account
that there may be “barriers” to dispersal (such as rivers, roads, or mountains),
or that different locations may have different habitat suitabilities. However,
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such features can be taken into account by modifying the cost function. A bar-
rier between two locations that cannot be crossed, or only with large difficulty,
can be reflected in a very large (or even infinite) cost on the corresponding
edge. Or, as another example, actual known dispersal events (e.g., from loca-
tion vi to location vj) can be dealt with by simply leaving out, in the initial
graph G, all possible incoming edges to vertex vj except the one from vi. This
way, the resulting minimum cost arborescence GMCA will always include this
known dispersal event (otherwise the algorithm may choose a different, possibly
shorter, dispersal event into location vj). Furthermore, and importantly, the
method does not strictly depend on the assumption that a location is always in-
vaded from the nearest previously occupied location, even though it is explained
above in that context. An additional term, which is inversely proportional to
the difference in first occurrence times ti between two locations, can be added
to the cost function c(e). This can give an “older” location preference over a
“younger” location to be chosen as a predecessor (even if it might not be the
nearest one), as its added cost term is lower than that of the younger location.
This additional time-based term can be weighted (or even completely replace
the distance-based term) to give it more, or less, importance as desired by the
modeler. As a final example, if genetic data is also available, a cost function
based on sequence distance can be used, in which case the algorithm minimizes
the total genetic distance. This is perhaps more desirable than using euclidean
distances, although much harder to obtain reliable data for.

These are just some examples of how additional features and assumptions
can be built into the method. As indicated, this is mainly done by adjusting
the cost function c(e) appropriately, or adding a stochastic component to deal
with uncertainty in the given data. Once the cost of each edge is calculated, the
MCA algorithm then simply finds the arborescence with the minimum overall
cost, whether that reflects distance, time, barriers, habitat suitability, or any
combination of these or other desired features. Thus, many extensions and
modifications can be made to the method, also allowing for a statistical analysis
if so desired, making it a versatile tool, not directly depending on any particular
(set of) assumption(s).

4. Theoretical results on optimal dispersal routes

In this section, we derive analytical expressions for the expected value and
for the possible minimum and maximum values of the total length of optimal dis-
persal routes in a simplified setting. Consider a spatially restricted, randomized
version of the dispersal routes reconstruction problem with n locations that are
equally spaced, at distance one from each other, along a one-dimensional (1D)
line. Each location i is assigned a first occurrence time ti ∈ [1, . . . , n] at ran-
dom and without repetition (i.e., the numbers 1 to n are randomly distributed
over the n locations). Using the integers from 1 to n as occurrence times ti is
mostly for convenience in the mathematical derivations below, but in principle
they can be any values, integer or real. In practice the only requirement is that
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they are unique (i.e., mutually distinct), so they can always be ranked and then
re-numbered from 1 to n.

Converting this spatially restricted version of the problem to the correspond-
ing minimum cost arborescence problem (as described in the proof of Theorem
3.1), results in a graph G = (V,E) with the |V | = n vertices regularly placed in
a linear arrangement at equal distances of one, and with (vi, vj) ∈ E if ti < tj .
The root vertex vr is chosen as the vertex with occurrence time ti = 1, and
the cost function c(e) is simply the (linear) distance between the two vertices
(vi, vj) = e. In the remainder of this section, for notational convenience we sim-
ply denote vertex vi by its assigned label, i.e., the occurrence time ti ∈ [1, . . . , n].
For example, vertex k is that vertex which has the label (occurrence time) ti = k
assigned to it.

Since all first occurrence times ti are unique, we can apply the simple greedy
minimum cost spanning tree algorithm to find GMCA. So, for each vertex
j 6= 1 we choose as “predecessor” the nearest vertex i such that i < j. Let
d(j) = c(e = (vi, vj)) be the distance of vertex j to this nearest vertex i with
i < j. The total cost C of (the optimal) GMCA, which is equivalent to the total
length of the optimal dispersal routes, is then:

C =

n∑
i=2

d(i). (1)

We can now ask, for example, what the minimum and maximum possible values
of C are, or what its expected value is, over all possible instances of this 1D
randomized dispersal routes reconstruction problem for various values of n.

The minimum possible value of C is easy to derive. This minimum value
is obtained when each vertex i has at least one direct neighbor with a number
j < i. This is achieved, for example, when the vertices are labeled either in
strictly increasing or strictly decreasing order (although there are several other
possibilities). The total cost, or length, is then simply

Cmin =

n∑
i=2

1 = n− 1. (2)

Figure 2 shows an example of such a case.

1 2 3 4 n−1 n
. . . . .

Figure 2: A 1D optimal dispersal routes example with the minimum possible total length
Cmin = n− 1.

The maximum possible value of C is somewhat more complicated. The main
idea is to assign the numbers 1 to n to the vertices one by one, in such a way that
each next one is as far away from the nearest lower number as possible. This
can be done in the following way (assume for now that n − 1 is a power of 2).
First, assign the numbers 1 and 2 to the two outermost vertices, so d(2) = n−1.
The next number, 3, is then put halfway in between, so d(3) = (n− 1)/2. This
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divides the linear array of vertices into two halves, and the next two numbers,
4 and 5, are each placed halfway in between either one of these halves, so
d(4) = d(5) = (n − 1)/4. This then divides each half into two halves, and the
next four numbers (6 to 9) are each placed halfway in between one of these four
parts, so d(6) = d(7) = d(8) = d(9) = (n − 1)/8, and so on until all numbers
are assigned to the vertices, which is achieved after s = log2(n− 1) such steps.
Generalizing this sequence, there is one vertex with distance d(i) = n− 1, and
then 2k−1 vertices with distance d(i) = (n− 1)/2k for k = 1, . . . , s. The sum of
all these distances is then

n∑
i=2

d(i) = n− 1 +

s∑
k=1

2k−1
n− 1

2k
= n− 1 +

s∑
k=1

n− 1

2
= n− 1 + s

n− 1

2
.

So, in general, the maximum possible value of C can be calculated as

Cmax = n− 1 +

⌊
n− 1

2
log2(n− 1)

⌋
. (3)

If (n−1) = 2k for some integer value k, this theoretical value of Cmax is accurate.
In other cases, it may be a small overestimate. For example, for n = 9 (= 23+1;
an example of which is shown in Fig. 3), both the theoretical and the actual
maximum values for C are 20. However, for n = 10, the theoretical value is 23,
whereas the actual maximum is only 22, and for n = 11, the theoretical value
is 26 and the actual value is 25, and so on until they are equal again for n = 17
(= 24 + 1).

1 236 4 8 5 97

Figure 3: A 1D optimal dispersal routes example with the maximum possible total length
Cmax = 20 for n = 9.

The minimum and maximum possible values Cmin and Cmax are only ob-
tained in a few very specific instances of the 1D randomized dispersal routes
problem (such as the ones shown in Figs. 2 and 3). What is perhaps more
interesting is the average (or expected) value of C for a random instance. For
this, we need to know what the expected distance E[d(i)] is for an arbitrary
vertex i, for which, in turn, we need to know the distance probabilities.

For the distance d(i) to be larger than k, vertex i needs to be surrounded by
at least 2k higher-numbered vertices. Given that there are n− i such vertices,
the probability of this is

Pr[d(i) > k] =

(
n−i
2k

)(
n−1
2k

) ,
9



i.e., the number of ways to choose 2k numbers larger than i out of n−i available
ones, divided by the number of ways to choose any 2k numbers out of the n− 1
total ones (we cannot choose the number i itself, hence n− 1). Note that since
there are at most n− i numbers larger than i available, the distance d(i) cannot
be larger than

⌊
n−i
2

⌋
+ 1.

The probability that d(i) is exactly equal to k is now simply

Pr[d(i) = k] = Pr[d(i) > k − 1]− Pr[d(i) > k],

and the expected value of d(i) is thus

E[d(i)] =

bn−i
2 c+1∑
k=1

k · Pr[d(i) = k].

Finally, combining all of this together, we get the expected value of C:

E[C] =

n∑
i=2

E[d(i)] =

n∑
i=2

bn−i
2 c+1∑
k=1

k

[(
n−i

2(k−1)
)(

n−1
2(k−1)

) − (n−i2k

)(
n−1
2k

)] . (4)

Of course this assumes independence of all the vertices, and no influence of
boundary effects, which is not entirely true in practice. However, one can expect
E[C] to be increasingly accurate for increasing values of n.

To verify these theoretical results, we wrote a small computer simulation that
generates random instances of the 1D dispersal routes reconstruction problem,
and then applies the simple greedy algorithm (section 2) to obtain the minimum
cost arborescence GMCA and the corresponding value of C (or, equivalently, the
total length of the optimal dispersal routes). Figure 4 shows a comparison of the
theoretical values E[C] from equation 4 and the empirical values Cavg obtained
from the computer simulations (averaged over 105 random instances), for various
values of n.

As the figure shows, the theoretical estimate is close, but slightly too low.
However, as expected, in a relative sense the theoretical estimates get better
for larger n. Figure 5 shows the theoretical values E[C] as a fraction of the
empirical values Cavg. Clearly, this fraction increases with n, and continues to
increase even for large n. The fractions are about 0.866 for n = 10, increasing
to 0.909 for n = 100, and to 0.935 (and still slowly increasing) for n = 1000.

Finally, it is interesting to compare the theoretically derived minimum and
maximum possible values Cmin and Cmax with the minimum and maximum
values for C actually obtained in the random samples of 105 instances. Figure 6
compares these theoretical values (solid lines) with the empirical ones (dashed
lines). The single +s are the empirical averages (as in Fig. 4), as a reference. As
the figure shows, for very small values of n the obtained minimum and maximum
C values are close to the theoretical values. However, the total number of
possible assignments of the numbers 1 to n to the vertices is n!, and thus grows
exponentially with n, whereas the number of specific assignments that result in
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Figure 4: The empirical and theoretical average total length C for 1D optimal dispersal routes
for various values of n.

the theoretical minimum or maximum value of C only increases very slowly. So,
the probability of achieving the theoretical minimum or maximum decreases
quickly with larger n, and the observed minimum and maximum values in a
random sample will remain closer to the average.

5. An example: Invasion of Centaurea stoebe L.

We now provide an example of how the theoretical framework and analysis
as described above can be applied to real data. We consider an invasive plant
species that was introduced from Europe to North America at the end of the
19th century: Centaurea stoebe L., a member of the daisy family. There are
(at least) two known introduction points for this species, one on the east coast
(near Westford, MA, USA), and one on the west coast (near Victoria, BC,
Canada). Dispersal data for this species is available in the form of the location
and year this species was first observed in various counties throughout the US
and Canada.

The given occurrence times ti are not necessarily unique, as they are only
provided as the first year in which the species was observed in each location (no
day or month specified). However, given that there is always some uncertainty
in the observed occurrence times (as already mentioned earlier), we subtract in-
dependent and identically distributed (i.i.d.) random values from the reported
times ti, thereby making them unique, and also taking uncertainty in the ob-
servation data into account. The random values are drawn from a negative
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Figure 5: The theoretical expected total cost E[C] relative to the corresponding empirical
averages Cavg for various values of n.

exponential distribution, which more or less simulates the time it would take
for an observer who “walks around randomly” in a given area to discover the
plant by chance. We tried different values for the mean µ of this distribution,
such as µ = 1, 5, 10 years, although this does not appear to result in any qualita-
tive difference in the reconstructed dispersal routes. Of course if µ is taken too
large (µ > 20 in our case), then the first occurrence times ti become practically
completely randomized.

Making the occurrence times ti unique this way, we then convert the data
to an instance of the minimum cost arborescence problem (simply using the
euclidean distance between two points as the cost function c(e)). From theorem
3.2 it follows that we can now apply the simple greedy (minimum cost spanning
tree) algorithm to obtain the most parsimonious (i.e., minimum total length)
dispersal routes. Finally, we repeat this procedure 100 times, and calculate
bootstrap support values for the reconstructed dispersal routes. In section 3 we
already indicated how to deal with multiple introduction points.

Figure 7 shows the result for the Centaurea stoebe data (using µ = 5 years
for the negative exponential distribution). The gray-scale on the edges indicates
the bootstrap support values: lighter colors indicate lower support while darker
colors indicate higher support. In a forthcoming paper [7] we will investigate
this particular case study and the results of the dispersal routes reconstruction
in detail, but one striking conclusion (which, again, does not seem to depend
on the chosen value for µ) is that the two separate and independent invasions
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Figure 6: The theoretical (solid lines) and empirically observed (dashes lines) minimum and
maximum total length C for 1D optimal dispersal routes for various values of n.

(east and west) show very different spatio-temporal dynamics, in part driven by
different climatic conditions.

In section 4 we derived analytical expressions for the minimum, average,
and maximum optimal values of the total dispersal routes length in a spatially
restricted version of the problem. With real data, such as for Centaurea stoebe,
it is more difficult to derive similar analytical formulas. However, we can still
obtain the empirical values, just as with the computer simulations used in the
previous section.

The minimum possible optimal value is obtained when for each location
(occupied county) simply the nearest neighboring location is chosen as “prede-
cessor”, regardless of the actual occurrence times ti. The average, or expected,
optimal value (and standard deviation) is obtained as follows. Given the loca-
tions and occurrence times ti, randomly re-assign the occurrence times to the
available locations. Repeat this a number of times, and for each such instance,
apply the minimum cost arborescence algorithm to get the optimal value, and
calculate the average and standard deviation over all instances.

Figure 8 presents the results of this. The vertical red line (labeled “obs”)
shows the actual (optimal) value of the total length of the reconstructed disper-
sal routes. The blue line (labeled “min”) shows the minimum possible optimal
value. The histogram (labeled “random”) shows the optimal values of 100
instances of randomly re-assigning the ti values, with the vertical dashed lines
representing two standard deviations away from the average.

As the plot shows, the observed value (red line) is closer to the random
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Figure 7: Reconstruction of the dispersal routes for Centaurea stoebe, using the minimum
cost arborescence method, with µ = 5. The two red dots show the known introduction points.
The gray-scale on the edges indicates bootstrap support values (light=low, dark=high).

instances (histogram) than the minimum possible value (blue line). One con-
clusion that can be drawn from this observation is that there is a fair amount
of “long distance” dispersal in the overall dispersal pattern of Centaurea stoebe.
This can, in part, be explained by the fact that the construction of long dis-
tance railroad lines at around the same time as the species was first introduced
in North America, has enabled it to disperse over longer distances in one single
dispersal event as would have been possible naturally. However, the observed
(optimal) value is still well outside of the random sample, indicating that there
is indeed a structured pattern in the dispersal dynamics of Centaurea stoebe.

To conclude, we have shown how the minimum cost arborescence framework
can be applied directly to real data and generate useful and insightful results.
Next to efficiently reconstructing invasion scenarios, including bootstrap support
values, a (rough) measure of how much “short distance” and “long distance”
dispersal has occurred can be obtained by comparing the actual optimal value
with the minimum possible one and a sample of instances with randomly re-
assigned occurrence times. These are just some examples of the possibilities the
introduced framework offers.

6. Conclusions and discussion

We have shown formally that the dispersal routes reconstruction problem
can be stated as an instance of the minimum cost arborescence problem, for
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Figure 8: Comparison of the actual optimal dispersal routes length (obs), the minimum
possible value (min), and that of 100 random instances (random) for the Centaurea stoebe
data.

which there exist efficient algorithms. Thus, the dispersal routes problem can
be solved in polynomial time (with a small exponent), placing it well within
the problem class P. Furthermore, we have derived some theoretical results
on the possible minimum and maximum, and also the expected values of the
total length of optimal dispersal routes in a spatially restricted version of the
problem, which were verified by empirical results from computer simulations.
With this, we have placed the dispersal routes reconstruction problem on solid
theoretical grounds, establishing it as a tractable problem that can also be
analyzed mathematically and computationally. In addition, we have provided an
insightful example of how this theoretical framework can be applied to real data
and generate useful results such as the most parsimonious dispersal routes (plus,
if desired, bootstrap support values) and a measure of the amount of “short
distance” versus “long distance” dispersal. And, as argued, the framework as
introduced here is versatile and can easily be extended and modified, or placed
within a statistical framework, depending on needs or circumstances.

Understanding the characteristics and determinants of invasion routes has
important practical applications, such as the design and implementation of quar-
antine strategies, and anticipation of conservation actions such as preventing es-
tablishment of new focal populations or eliminating them, rather than focusing
on established invasion fronts [24, 30].

So far, several approaches have been used to infer invasion routes. The first
quantitative method that was used is based on neighborhood diffusion, and is
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often referred to as Fisher’s wave of advance model, in which the range of an
invading species is predicted to increase linearly with time [15, 28]. A constant
velocity is frequently observed in many organisms, especially at local scale [4].
However, recent data at larger scale [3] show that long-distance dispersal could
occur simultaneously with neighborhood diffusion within the same species, ac-
celerating the range expansion [26]. This type of stratified diffusion can be suc-
cessfully modeled using dispersal kernels that incorporate various step lengths
of dispersal [23]. This approach has the potential to relate the rate of spread of
populations to their behavioral and demographic properties and thus to provide
valuable ecological insight into invasion processes. However, the acquisition of
proper data to feed the models requires extensive effort. Moreover, the approach
relies on the hypothesis that species have a constant dispersal kernel through-
out the invasion range, an assumption that might not be valid in many species
undergoing range expansion [27]. We believe that our computational approach,
requiring only dated observed occurrences and not being based on any disper-
sal assumptions, has the potential to efficiently document invasion routes with
minimal effort. It can, for instance, be used as a null model against which to
validate diffusion and long-distance dispersal approaches.

Another approach to infer invasion routes that has emerged recently in the
literature is based on the use of genetic data (see [18] for a review). Molecular
genetic data can offer unique insights into the sources, routes, and mechanisms
of spread [19, 21]. The main insight from molecular genetic studies of invasion
routes is that multiple introductions from the native range might occur but re-
main unnoticed because they cannot be distinguished from spread from existing
populations in the invaded range [18]. This bridgehead effect can thus not be
taken into account explicitly by kernel diffusion approaches. Molecular genetic
studies thus have the power to reveal separate invasion outbreaks resulting from
repeated (trans-continental) introductions [22, 9, 21]. However, inferring routes
using molecular genetic methods do not replace the analysis of observational and
historical records. Having historical data is a necessary requirement for defining
a limited set of invasion scenarios that can be tested against each other statisti-
cally (e.g., by using an Approximate Bayesian Computational (ABC) approach
[21]). We propose that the minimum cost arborescence approach as introduced
in this paper can be used to define the most parsimonious invasion scenarios
(by, for example, reconstructing several different dispersal routes using differ-
ent model assumptions), which can subsequently be tested using a population
genetic analysis. As such, the two approaches can act in a complementary way
as a powerful invasion analysis tool.
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